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NASA TT F-9872

THEORY OF THE SUPERCONDUCTIVITY OF THIN METAL FILMS IN A
STRONG MAGNETIC FIELD (I)*

Wu Hang-shéng, Leng Hsiao-~lin

ABSTRACT
Y

This article studies the properties of a LEZercongucting
film in a magnetic field close to the critical temperature
Tc' The magnetic field is parallel to the film surface.

This article discusses the theory of Gor'kov (Ref. 3),
and shows that this theory employs the local approximation
which was introduced in his expression for the Green's function
of an electron in a magnetic field‘EZ(rr'). The authors of
this article assume that this expression for‘EZ(rr') is not
applicable to fine films, and it is replaced by expansion in
a perturbation theory series in powers of the vector potential.

The compensation equation and Gor'kov's current equation
are generalized to the case of the film. The equations are
solved for a film having the thickness d <60(T), and the ex-
pressions are obtained for the vector potential, the magnetic
moment, energy gap, and the critical current. The phase

conversion of the film in a magnetic field is studied, and the
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expression for the critical field is obtained.

The results obtained coincide with the Ginzburg-Landau
theory in the case of a fixed film (d>>§ o) and differ consid-
erably from this theory in the case of a fine film (d<£0) (in
addition to the expression for the critical current and the
criterion for a type of phase conversion of a superconducting
film in a magnetic field). The difference is clearly expressed
in the dependence of all quantities on the film thickness. The
results obtained are valid in the case & (T)> d>> d*, where

1 go 1/2 -6 °
2d* =(——————-—-) (for Sn, 2d* ~10 cm ) for the approximation

0.36 P, R
Ow:t@q;/(

assumed in this article.

I. INTRODUCTION

In a previous paper published not long ago, one of the authors /873%
used the method of Green's function and extended the theory of BCS (Ref 8)
to the case of superconducting metal films, and provided a theory of super-
conductivity of thin metal films. It discussed the equilibrium properties
of superconducting thin films,and proved that when the thickness of a
superconductive film is thin enough, its critical temperature TC, the energy
gap, and thermodynamic properties change periodically with the film thickness.
In this paper and a later one, we shall study the properties of a super-
conducting film in a magnetic field near the critical temperature Tc' The

intensity of the magnetic field is arbitrary and is not limited to the
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case of a very small critical magnetic field.

As 1is well known, the property of a superconducting substance under
the above conditions can be discussed by the abstract of Ginzburg-Landau
theory (Ref. 2) (abbreviated as the GL theory). For an infinite supercon-
ductor, Gor'kov (Ref. 3) has proved that the basic equations (i.e., the
generally called Ginzburg-Landau equations) in the GL theory can be de-
rived from the microscopic theory of superconduction. These equations are
equivalent to the compensation equation and the current equation in the
microscopic theory.

A superconducting thin film has an extraordinary special feature.
When its thickness 2d is so small that it can be compared with the coher-
ence length £;, the relationship between the current and the vector poten-
tial is not local even in the range near Tc. This represents an important
difference between a superconducting thin film and an infinite supercon-
ductor.

In this paper we shall analyze Gor'kov's theory (the third section),
and shall point out that in the process of deriving the GL equation, Gor'kov
actually used a local approximation. This approximation is mainly /874
introduced implicitly in the approximate solution of the Green's function
(ég (xr, r')); (ég (r, r')) is the Green's function of a normal electron in a
magnetic field. For this reason, Gor'kov's theory is only applicable to
a superconducting film of large enmough thickness. In order to extend
Gor'kov's theory to a superconducting film of smaller thickness, the crucial
problem lies in considering the non-local characteristics of a supercon-
ducting thin film; therefore, we must discard the local approximation used
by Gor'kov. 1In the third section, we shall show that the approximate
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expression of Green's function qg (t,r") used by Gor'kov must be discarded.
Instead, the small perturbation expansion of ég (r,r') in power series of
the vector potential can be used.

Applying the method given in the literature (Ref. 1), one can readily
extend the basic equations in Gor'kov's theory to the case of a superconduct-
ing film. In Section 2, we give the compensation equation and the current
equation applicable for the range near the critical temperature Tc. These
equations are expressed through ég (r,r'), and are valid for films of any
thickness. When the film thickness is smaller than 26g(T) [8((T) represents
the weak field penetration depth of the infinite conductor], the distribution
of the magnetic field in a metal film is not very different between the
superconducting phase and the normal phase. Using these physical character-
istics and under the assumption of constant energy gap, the solutions of the
compensation equation and the current equation are obtained. Also, the magnet-
ic moment, energy gap, and the critical magnetic field (the 417th section)
of the superconducting thin film are calculated. 1In the eighth section, the
critical current is calculated.

The results we obtained (except the critical current and the criterion
for the order of the phase transition) are considerably different from the
GL theory when d < 50-. The difference between the two is expressed par-
ticularly well in the dependence relation on d; only when d >> £, does the
result of this paper agree with that of the GL theory.

In another article (Ref. 4), we further investigated the second-order
phase transition critical magnetic field and compared it with experiment.

The theory and the experimental results agree very well.
The results of this paper and (Ref. 4) are applicable to superconduct-

ing films which satisfy the condition GO(T) > d >> d*, where 2d is the
4



£aXl/2
film thickness, 2d* = L0 , and p, 1s the wave vector of elec-
0.36 Py 0
trons around the Fermi surface of normal metals., For Sn, it can be esti-
-6

mated that 2d* ~ 10 ° cm. As to the properties of superconducting thin
film with d < d*, we shall discuss them in another article, where those
which are neglected in section 417 are going to be important.

II. BASIC EQUATIONS

Consider an infinite superconducting film with thickness 2d. Assume
that the magnetic field is parallel to the film surface along the rj di-
rection, and the current passes along the I, direction (See Figure 1).
The magnetic field and the current are both functions of r alone. There-
fore, we can select the vector potential which has only a r, direction

component and besides is a function of rj only: A= (O, A(rl), 0). At this
3A(Ti)

ari
According to the method given in (Ref. 1), it is not difficult to ob-

time, the magnetic field H =

tain the equation satisfied by the Green's function of the superconducting
film in the magnetic field. If we make the selection postulated by our
criterion, the energy gaps are real, and are all functions of rj alonme.

Therefore, these equations can be written as:

B & B (3 _________
{»/__» + 2 o7 + —-(3-'-1 = A( ,)) + u(r) + ,.} Gu(r, ) +

+ A(r‘)F*(r, r) = 6(!‘ - l"), , (1a)
i BE B (B e e : )

{ ‘w+2m ar.+ m(ar, ficA( ))+2m Or} U(')+P}F(t )+
4 AGr)G(r, ') =0, (1b)

where the energy gap A(ry) is /875

aCry) = lelkT 2] Fi(r, 1), (2)

U(r) represents the potential energy of the metal film boundary. We have
selected the directional very well. Green's functions of the
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superconducting film appearing in equation (1) and those introduced in the
following sections all satisfy the appropriate boundary conditions. We let
Gw(r,r') and ler, r'), etc., satisfy, in the direction of the film thick-
ness, the boundary condition of that partial derivative equal to zero. For

example, the condition for G (r,r') in the thickness direction is
w
0G.(r, )
a"]

_ 9Gu(r,¥)
or,

r=0 @24 |

(3)

== o.
r{m0 % 24

From the current formula obtained below, it is not difficult to see that
the physical meaning of the boundary conditior lies in the fact that the
current along the normal direction of the boundary is zero. The Green's
function satisfying the above condition can be expanded, using the solution
of the single-particle Schrddinger equation without an external field,

and satisfying the same boundary condition. The solution is

'I’l"("l’ L£T) '!) - ‘P@("I) (51;) 3“""'"')’5

’;12 | when k = 0
Pa(r)) = i
' ,’-lcoskr; N hen k $ 0
d when
B 2
Sape = — (& + p* + );
2m ‘
where K ='%%, n=20,1, 2, ..., This kind of expansion represents an ex-
tension, to the case of superconducting films, of the expansion method from
plain waves, which is generally used in an infinite sample.
Using the method of (Ref. 3), we can introduce the Green's function

éo(r, r') of normal electrons in a magnetic field. It satisfies the equa-
w

tion
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Figure 1

A Superconducting Film of Thickness 2d
(The Magnetic Field is Plotted Along the

L Direction, and the Vector Potential is
Plotted along the ry Direction)
. B & r,'(a ie )’ s . }.. : S
ot ——a—t— -4 + ————U(r) + " N=(r—r'),
{ 2m Orf 2m Or;, fic (r) 2m Or, @) +p G.("; r)=8(r l’).‘ Y]

Applying this, we can transform (1) into a form of integral equations:
Gulr, ) = E(r, ¥) — [ 182, DAGDFEQ, ), 5 o
- 5 a

Fir, ) = 41820, a6, 1), | 5 5

When At =1 %— << 1, equation (5) can be expanded with respect to A(ry)
c
by the small perturbation theory. Under the approximation accurate to the

X term, Gw(r, r') can be expressed as /876

Gu(e, ¥) = E%r, 1) — H Adm&(r, DAR)TUm, F)a(m)EL(m, 1),  (6)
Substituting (6) into (5b), and using equation (2), we obtain the gap equa-

tion applicable near T,.

a(r) = leltr 3 {082, Da@ELa, v -
- e

|

— lelkT > m dhimdsGo(l, m)Aa(m)Go(s, r)A(5)G% (s, m)A(l) X

x G (1, r),




In the same way, the current equation near T. is obtained

i) = = feh (i — _a_) DY ﬂ dlam&(r, DAU)E(m, ©') X |

m ar; a"; riers [

|

(8)
X A(M|)a°—a(m ’ l)-

The compensation equation (7) and the current equation (8) represent an
extension of the corresponding equations in Gor'kov's theory. The integra-
tion, with respect to the coordinate variables, which appears in equations
(5)-(8) and in the equations of the following sections,is limited to the

interior of the metal film.

III. LOCAL APPROXIMATION IN GOR'KOV'S THEORY

éo(r, r') introduced in the previous section is defined by equation
W
(4), and it satisfies a boundary condition similar to equation (3).

Gor'kov gave an approximate expression for é%fr, r') as, (Ref. 3)

L areirp,

G(r, rj) =¢ Gir, r), (%)

where G%ﬁr, r') is the Green's function of a free particle. With a metal

film, it satisfies the equation

’

fo+ Eovrmut + ) cir, ) = atr 1), (109

Therefore, we have

GUr, r') = j j dpdq 1 ry iPCsmrDbintrr)
»T) (2m)? z;, 70 — Expe Par)pr(r1)e > (11)

where gkpq = €kpg ~ M- In the case of an infinite super conductor, if a

solution of the equation (9) form is substituted into equations similar to
(7) and (8), if the energy gap A(ry) is expanded in Taylor series with
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2, (1
9°A("i)
respect to ry, if terms up to oy X are retained, and if the exponent of
1

equation (9) is expanded retaining terms up to the square of the vector

potential, the GL equation is obtained. This is exactly what Gor'kov did.

For superconducting films, if we follow the same procedure as Gor'kov's,

it is not hard to prove that the results obtained from equations (7) and
(1), under the approximation of constant energy gap, are exactly the same
as those in the GL theory with k = 0. There is a difference between the
two only when corrections are introduced, considering the dependence of the
energy gap on ry. When the film thickness is small enough, this difference
is not important at all. This, however, does not imply that the GL theory
is accurate even in the case of a superconducting thin film. The problem
consists of whether it is reasonable to apply Gor'kov's approximate solu-
tion here.

In order to amalyze this problem, we should re-examine the solution of
ég(r,r'). Let us write the differential equation (4) which ég(r,r')
satisfy as | /877

{iw + 22':-'—‘7’ —U(r) + p} Gor, r’) = &(r - r) +
(4)

+ [ﬁ“ atr) 2+ za 2 "’(")] Gr, 1),
mc

me Or,
We would like to point out that Gor'kov's approximate solution (9) can be
obtained in the following manner. First, let us neglect the term contain-
ing A% on the right-hand side of equation (4) (this approximation is called
approximate A). Then, using equation (10), we can write it as an integral
equation:

Gilr, r') = G3(r, r') + j co(r, i 401 2 za.om,
mc 2

Proceeding with the substitution, an infinite series is obtained:

9



tch 0
A(Il)a;c(l , ') + ?

S(r, r') = G%r, ¥') + sle°(r, 1) i
iehi . [ (12)

Hdldmc“(r 1)k "” A(I.)—-G"(l m) 2 A(m .)——-r:(m, Y e,

Then let us substitute the vector potent1a1 under each integral sign in

(12) with A(ri) (we call this approximation B), and we obtain
&r, ©') = GUr, T )+"" Ar ,)Sle?,(r 1)~—c;°(1 D+

"")m(r,) SSdlde“(r -2 - 621, m) 52 a -Gl m, ) + -+, (13)

It is not difficult to prove that the nth term of (13) equals

e (&) 4t — et o), (14)

Taking n = 2 as an example, and using equation (11), the n = 2 term can

be expressed as

% A4(r) SI oL 2 (iw e); wl(’I)¢Q(';)eh(".’9”«. ""” |

(2x)
Using the transformation ____E___ 9 ( 1 )‘
(fw — &) Wapcw—E’
and integrating by parts, we obtain
L Pa==rp, Pge=p, i\
o A=) [ AL 35 L prdp e T, |

that is, .
';: A(r)(rs '_-_r;)Cﬂ(l', r),
In general, equation (14) can be proved in the same manner. From equation
(14), equation (13) can be seen to correspond to equation (9).
The above derivation clearly explains the fact that, in the Gor'kov
approximation, two approximations are actually involved, i.e., approximation
A and approximation B mentioned above.

In the introduction, we have pointed out that a theory used to study
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the behavior of a superconducting film in a magnetic field must take into
consideration the non~local feature of the current vs. vector potenfial re—
lationship. Essentially speaking, approximation (b) is a local approxima-
tion. Under this approximation, equation (8) is a local relationship /878
between the current and the vector potential. Therefore, h53§ problem we
are studying, approximation (B) is not applicable. This can be explained
further from another angle. In fact, it is very easy to prove that in the
vicinity of T, the Green's function qg(r,r') of a free particle decreases
very rapidly when |r - r'| > £p+ Since the variation range of the vector po-
tential A(rj) is the film thickness, for a thick enough film (2d >> EO), the
relative change of the vector potential within £p is very slow, and the lo-
cal approximation (B) is applicable. However, for a relatively thin film
(24 << EO), the relative change of the vector potential within EO is very
fast, and local approximation (B) is not allowed.

As to approximation (A), it is applicable to any kind of film. 1In fact
the ratio of the square term of A(r;) to the linear term on the right-hand

eA CHOGO(I)

side of equation (4') can be estimated as <
* cpp ~  cPO

it is reasonable to neglect the term containing Az(rl) in (4").

<< 1. Therefore,

Summarizing the above discussion, we reach the following conclusion.
Gor'kov's approximate solution (9) which contains a local approximation is
not applicable to the problem studied in this paper. However, the expansion
formula (12) of ég(r,r') which contains approximation (A) only is completely
applicable. In the vicinity of Tc’ it is sufficient to take only several
limited terms. This point is used in all of the following sections. We
would like to point out that the approximate expression of ég(r,r') thus
obtained satisfies the boundary condition (3).

11



IV. THE VECTOR POTENTIAL AND THE MAGNETIC FIELD

If (12) is substituted into (7) and (8), and a method similar to that
of (Ref. 3) is used - that is, the energy gap function under the integral
sign of (7) is expanded into Taylor series with respect to Ty, up to the
aZAgriz term,and terms upto the square term of the vector potential are re-
taiged - we would obtain an integro-differential equation. This is an ex-
tension of the GL theory to the case of thin filmg, This equation, how-
ever, is very complicated and it is not easy to obtain an analytical result.

In this and later papers, we restrict ourselves to the study of the
properties of superconducting filmswith d < §p(T). From the discussion of
the third section and (Ref. 4), we found that the difference between the GL
theory and the experiment mainly occurs in superconducting films with
2d s £3. A study of the properties of a film with 2d s £; is the main ob-
jective of this paper. We would like to note that when the temperature is
close enough to Te.» GO(T) will be greater than EO. Therefore, in the
vicinity of T., it is suitable to study the superconducting film subject
to the limitation of d < 60(T). For the superconducting film with
d < 60(T), under the approximation of constant energy gap, equations (7)
and (8) can be solved directly by the following argument. Actually, when
d < 6O(T), the distribution of magnetic field H(ry) inside the metal film
at the superconducting phase is not much different from that at the normal
phase. For this reason, we can express the vector potential A(rl) with
the vector potential of a normal-phase thin film Hory + C plus a correction

term for superconduction, i.e.,

ACry) = Hory + € + A(ry), (15)

12




where H; expresses the intensity of the applied magnetic field; C is a

constant. Since at ry = 0 or 2d, ﬂ-—ll = Hp, therefore, A(rl) satisfies

the boundary condition
dz(f‘) - o
dry In=0m * i (16)

It is apparent that, when d < 60(T), ;\(rl) is a small quantity. Sub-
stituting (12) into (8), and retaining up to the linear term of A(ry), the

current equation, under the approximation of constant energy gap, can be

written as /

() = “’7 iehdl yr }_, 5 Sdldwm (Ear_, - 5‘3:)';_'. G, 8) X

X 1’1 ACn) -2- G(s, DGAUm, r)GE (m, 1) —
a.f;

mc

_ icfiA’ AT Zs S""’"’“(‘a‘ -9} &, DEm.s) X

ar, a"; 3=ty ) |

x'ﬂ"_,« 0 -G, ) X Gm, 1) - R a7

- '-‘ié- DY S Xm.zm (—"?— - —f?—) G2 0r, DG, 1) (m, X

arl ar, rery

B (s )——G‘l..(s, D, |

m
2p(r
Using dd—fé-—ll = - 4—TTJ(rl) and equation (15), under the first order approxi-
1

mation, we obtain

LA(ry) mmw s s‘ - 8 _ 8 ) " o :
= AT Z dldsdm il ) GUr, )l + €) %

X -56—- GX(s, DG%(m, r)C.t(m, 1) + : . ‘

4m2hw Ll - Z S j d]m,n(?;?_ - _Q.) Gﬁ(r,l)(?{'.(;n, 8)(Ieq + )X

rs  Ory/rien
d

X —3:, Gf,(s, r)ci.(m, 1) +

4 el > S jdlddm (Fa- - i)

r afg riery

(18)

GUr,DG2(m, r)GL(m, s) X

X(H.,r,+c)-—(; .,(s,l) . !

13




Substituting the expression of G(Z)(r,r'), equation (11), into (18), inte-
grating with respect to the coordinate, and performing a simple combination

of terms, we obtaln

LA(r) 4,-,2511_\:(0 + Hyd) kT 2 f dpdg { 20

dr} Z:r)’ (fw + 5)(::.: - e)’ +
. P’ .
; , ! ' + Gw + £)(iw — E)} o’ kry ‘ .
_ _ er’ﬁ’A’H, pd 1 ‘ 2p
1' , m’cid? Z SK (2n -z,-: (W’ — &)(iw + £)(iw — ez)
} cos(k, k) _ (19
o (-w e e,)(m e T &) (k)
’ o 'A’H ' ZPP : \
' K | 3c3d? oo E ﬂ‘ (27)* 4 520 {(l“’ — &) (iw + &) (iw — ez)
' ' + ol ' } cos (& — k»)ry |
Giw — &)(iw + £)(w — E)(iw + 6)) (h+ b)Y °

2 2
h h

where £, = =— (k? + p2 + q2) -y, &y = o= (k5 + p2 + ¢2) - u; the added

1 2m 1 2 2m 2 .Lgi(.).

condition under the summation sign, kj - ko

odd is the simplified notation
of -i—d (kl - kz) = odd number. Summation is performed over all the posi-

tive and negative quantum numbers.

Integrate both sides of equation (19) from O to ry and select the inte-

r
gration constant C such that %—l—ll obtained satisfies the boundary condi-~

tion (16). Using this method, we find that

C = — Hd, (20)
From equation (19) with the use of (20), we find that
Z(fl) == lg -+ I;, (21)

where

2re’l? A'Il., 29"
I = ioid kT 2_1 _“ (27)? h_%-_’_ {(,w — &) (jw + £)(fw — 61)

+ [ } cos (kv — kz)": s
(iw — £)(iw + 51)("'0 —&)(iw + &) (ky — ko) (21a)
.. 2re’ B AH, 20
fi= mic’d! kT Z Sj (2x)? k- %;-n {('w — &)'(iw + &) (iw — 51)
+ ¢ } cos (ki — ki) (21b)
Giw — &)(iw + &)(iw — &)(iw + &) (hy — k) + k)T

14



First, calculate integral Il' Let v = k2 - ky. Summation can be con-

sidered over kl and v. 1In general, for a superconducting film which is not
7

too thin (2d >>>> 10 ' em), there is always << 1; therefore, the sum~

pod
mation over k, can be converted to an integral. Transform the integral on

dpdqdky, into the spherical coordinate; then it is very easy to prove that
2,2
2m

h
be neglected (here vo = —Eg is the speed of electrons at the Fermi surface

the contribution of the third term in £2 = El + hvov cos O + to Il can

of a normal metal). Therefore, (2la) can be written as

- EAH,p} cosvr, {* . _ :
e S S [~ el aa ) x
. 2 . |
X !
{(iw — £&)(iw + &) (iw — & — ﬁ”o ”’) + "

+ . — L
‘(lw — &)(iw + £)(iv — & — bogws)(iw + & + hvvx) ’

Integrate with respect to &:

8c2AHops 1 cosvry 1 1—2
I, = ,ookTZ:Z TR _,dx" 4!

mc'd >0 v (22)
Bol? \
Then integrate over x. We then find
. nry
2 Al. d) d I-Iod - COS(ZI <+ 1)-2_4- ( P ) |
W o Smr————— e t———  — 0 | e y
where the functions are as follows:
' /881
O(y) = :—,(’ (G(9) — 9F(n)], (23a)
< 1 a1 |
G = L
o) .‘?.’,(2:- + 17 ° (2a+ Dn’ o (23b)
F(q) = 1 [1-— 2n + 1 |"——-—1—-—],*
:Z'«’)Zn-i-l (2n % (20 4 1)g)
c=o07282% ' (23¢)
B e :
’ ‘ (234d)
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AO(T) and §3(T), respectively, express the energy gap and the penetration
h\)o
kT,
As to integral 12, it can be estimated as follows. From (21), it can

depth of a weak field of an infinite superconductor, €y = 0.182

be seen that the ratio of the two integrands in 11 and 12 is

G+ kP _ (2h + ) (1 + "'i"i) ~ (1 + 2pals)
(b — &) v? v

(x = cos 8). From the above calculation of I;, we can see that when

d << &0, the main contribution to the integral comes from the region

X ~ ﬁ%ﬁ; ~ 0.36 %%3 and when d >> £, x ~ 0(l). Therefore,
Chi+ &) [ . 241 |
~ |1 + 0.36py( 24 _] |
when d << EO’ Chy — k) Po. )G. ,‘
Y]
gk‘—i-_&l_)?~(?°24)2.
when d >> £, (ky — &)

Therefore, when d >> d* the integral 12 can be neglected. Here

2d* = (a%gg'ég /2. Paking Sn as an example, EO =2.3x 10_5 cm,

vg = 0.65 x 10° cm/sec (Ref. 5), we have 2d* -~ 10_6 cm.

In this paper and (Ref. 4). we shall neglect 12 and similar integrals.
This is allowed for relatively thick films (d >> d*). For thinner films
(d £ d*), the contribution of 12, compared to Il’ can no longer be neg-
lected. But we shall not consider this case in this paper.

Summarizing the above calculation, for a superconducting film with
d* << d < 60(T), we obtain

ACn) = H(ri — d) + 4(ny), (24)

and

16




nr
T 2 = cos(2l + 1)- ; <
2_a & 4 Su 2d ¢( o )

ACr) = 3AT) (TYE& & 41y \u+/f

(24a)

From the definition of ¢ (23a)-(23c), it is mot hard to prove:

when. n >> 1, O, (n) ~ 28 1
o(7) P ¢(3) .’
when n << 1, D(n) =~ 1, : ‘

Since in (24a), almost all contributions come from the terms with smallest
2, by using the assymptotic expression, we obtain

AN

xry
2 & & e, cos(2 + 1)57 |
for d < & ’“") 3 AXT) 6(’1‘)6.( ) .-Z. (@+1y ° (253)

A 2 '| 1 r,) !
1 — — !
and for a4 > gy, AN =m0 o.(n( "’)( z &) |(25b)
3 -
(25b) is the same as the result given by the GL theory (Ref., 2, 7).
From equation (24), the magnetic field inside the superconduc- /882

ing film can be obtained instantly

ry
I P SV I IR N 7 g |
HCr) = H, {1 3 ANT) AT & ,Z., A + 1)‘(p (zz + 1)} | (26)

22 g2
¥ 20D
& (T) GO(T)

Therefore, it really is a small quantity. If, furthermore, we substitute

From equation (24), we can see that Z\(rl) is proportional to

(24) and (24a) into (17), we can obtain the correction term proportional to

A4 a4 b .
Aé(T) 66(T) y a similar calculation.

V. THE MAGNETIC MOMENT OF A SUPERCONDUCTING FILM

In a magnetic field, the magnetic moment of a superconducting film can
generally be expressed as (Ref. 2):

Y‘”(r‘)—"”dr =1 - (4(2d) ~ Hd).

° 4x

Using equation (24), we obtain
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[- 3
. o)
1 & & dpy °(zt+1 | (27)
B= T 3 84T) T & (Hed) Z Qi+1) "

It is not difficult to see that

2 |
when d << g, p= ————-—-————(H.,d);; (28a)

--Ll 2 4 _(4a)
and when d >> g B 6m ANT) 8T T (28b)

(28b) agrees with the result of the GL theory, but is very much different
from (28a). Therefore, it can be seen that the dependence relation of the
magnetic moment, u, and d is different for a thin film and a thick film.
The difference between the two reflects the importance of the non-local

nature in a thin film.

VI. THE COMPENSATION EQUATION AND THE ENERGY GAP

Under the approximation of constant energy gap, the compensation equa-

tion (7) can be written as

EA’=24—K, j (29)

i

where

|

R = —lelkr 3 oo f dtnamaneqt, my@es, @6, mELA D, |

|
(30b)
Substituting (12) for the é%(l,r) in (30b), and retaining up to the square

K= |glkT Zﬂ dands(l, &, 1),

term of the vector potential, we have
K = Ko + K;, (31)

where

ko= ek 3 ([ aane2a, nesa,n, (32a)

18




lefi

Ky =2|glkT Z S slesimdr,G"(l r)¢t.dd, ) A(s )'—' G .(s, m) X

« ich /883

12 A(my )T G .(m, r) + ‘

mc my . ‘e,. . . (32b)
+leltr 3 [+ f aanmanci, €L G )2 6s, 6L, m x

lth

mce

A(m )f”:c'--(m. r).,‘\

In (31), the terms with odd orders of the vector potential are zero, and are

not written out. Substituting (24) for the vector potential,in (32b),
2 2
. A 6
we can write Ko as follows, accurate Fo AO(T) 60(T)
KZ = K;‘” + Kgl,’ !

where

K® = 2|gkT ZS- : -jduumar,az(l, 6L, 0) 2
leh

+ |l > f-- j.zlmmar,c a0 ik ich 2 i — .z)—- G%s, r) X
ich

ich u.,(;, - d)—- c-..(., m) X

Ho(mn

°w(m, r) +

H.,(m,—d) a G-..(m r), . (320)

X G u.(l, m)

ieh

K = 4eliT 3 j : S dldsdmdr,G,,(l, 6L, 22 H(s — 4)—— G2.(s, m) X

x 28 G(m) 2= Gtu(m, ) +
+ 2| glkT ZS jduumar,cﬂ(l o) B 4 LY .)-—-c: (s, F)G.(l, m) X

5 ich N
H.,(m d) B, G-..(m, r) (32d)

Only the lowest order term is kept for K:

R=—lelir 3 -+ dasamanciat, mycis, metts, mict., o, | on

Calculation of Kz_g_l_). First integrate with respect to r,;, using (11)

and (24a); then combine the terms to obtain
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KW _l Iglx;"A’iﬁlﬁ 3 ZSI%(ZL, h-i-. h-z--{ 4p |

m’cly, (iw — &) (iw + &) (iw + fz) P
, ! Amty=%
B v : . nd
'v"‘\ A 20 } ® (24“(1 - kz') +
v (xw — & )(iw + &)(iw "“ez)('w + £2) b — &l . ‘
we' ATHYip} SHb 4p + 1(34)
+ lel micty, 2..: j—‘ (2x)? (24)' h-‘--:,-z,;-{(lw"'fn)('w'*‘fn)’('w+ex) |
no
25 } o (5% —5)
(uo—€:)(m+€x)('w—&)(uw+ z) Ik)"k)l’lk]‘*’k!l"

where the function <I>0(n) is defined by (23a)-(23c). When d >> d*, /884

the second integral in (34) can be neglected and the first integral can be

obtained by the method of the fourth section.

C 4 1 7 ”
K = laln(o) ZEDCCREE 000, -

where

O (o) = 256 Z‘: “’3(2—1%-—1') | (35a)
! 2550(8) im (2 +1) " |

Similarly, when d >> d%, we obtain

© — _ %16(5)3.11«4'
K® lgIN(o) mres Na) (36)

where

0(s) = —32 S w"(zlil) (36a)
0 31C(5) = (+1)y”

The two integrals remaining, Ky and I~(, are very easy to calculate, and we

shall only write down the results as follows:

Ko = 24 [1 + lglN(O)lnI-‘] =~ 24[1 + gN(0)Ar], (37)
78(3)d
R = —|gINCo) T=2%, .
Substituting the obtained Ky, Kz(o), Kz(l)and K into (29, we can
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calculate the energy gap of a superconducting film immediately:

~1. 2 H o
| A2 1 3 6 ) l( ) Hc" i (39)
(T o(a) "
1=t 66o(T)E. o )H'cu

When d << GO(T), the second term of the denominator can be neglected, and

thus

1 &£ d H}
_—1.__..____ 0
35 e 0.(6’)

T) Hiw' | (40)

A!
aXT)

Using the asymptotic expression of @1(0) at g >> 1 and 0 << 1

(o) ~1 (e k1), \
~ 28C(3)x 1
we get
- - __l.i_d'__'_ﬁ_ 1
when d << £ AXT) 3 & 6T) Hiu’ l (41a)
0 ___A’__= -1 _d Ho _.
and when d >> §;  AYT) 6 S(T) Hhw' | (41b)

(41b) agrees with the GL theory. Here, we find the same situation as in
sections four and five - that is, for a relatively thin film (d < EO), our
result is different from that of the GL theory, and for a relatively thick
film (d >> EO) the two tend to agree.

VII. THE PHASE TRANSITION OF A SUPERCONDUCTING THIN FIIM /885
IN_A MAGNETIC FIELD

Using the results of the previous section, we can study the phase
transition problem of a superconducting thin film in a magnetic field. For
this purpose, let us first establish the expression for the free energy.

In a magnetic field, the difference in free energy density of a thin
metal film at the superconducting phase and the normal phase can be ex-

pressed as (Ref. 3):
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e
F,,,—F.,,aL dAIAI’—é—AE—. j (42)

Under the approximation of a constant energy gap, the compensation equation

can be written as

24 = |glr 3 ([ aun@zat, o820, ) -
-__[xlkT z j . -Idldmdsdr,&?,(l, m)G°(s, r)G (s, m)éﬁ.,(i, r)at,

Therefore, we have

il
| 7]
‘el K , '
3a. 2lglda T’ (43)
where K is given by (30a). Substituting (43) into (42), we obtain

1 K
F _F" = 1A .____..
H H 2| I 2|g|d

Applying (29) again, we find the free energy density of a superconducting

film in a magnetic field

Fop= Foy + ..H’_(Lll.i. _L.(l -.LK)|A|’,
8x 2|gl 2d |

(44)
where F ., expresses the free energy density of the thin film at normal phase
when H = 0.
The critical magnetic field HC of a superconducting film is given by
the following thermodynamic equation (Ref. 2):
He _Hew _ o | (45)
8  8x 24

where

5= S" [’i(ﬂl = L reri(e) + Ar] dris

ol 8x (46)

AF designates the free energy difference of a superconducting film with mag-
netic field and without magnetic field. Hgy expresses the critical magnetic
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field of an infinite superconductor. Using (44) and the relation

H2cm .
Fho - Fyo = —gg o Ve obtain

S ( R ) 12y Hiw |
Fe-——\(]l——K}lA?*+—"=, | .
A el 2")! T e (47)

Substituting (47) into (45), we have

Hy=— A (11— -lK)-lAI’ -1 r[H’(n) — 2HcH(r))dr,
Igl 24 2d Jo 1

A(T
Under the situation we are discussing, H(rjp) = HC + Q%f_ll. Applying the
1

result calculated in Section IV, we obtain the following relation /886

_Ax (1 L2295y (8) AL
Izl(1 27'\) 98x'¢*(3) AN TS T)IE 0a), (48)

where y = 1nC = 1.78, K is given by (30b) and (31)-(32d), and only HO must
be replaced by H,.

(48) and (39) are simultaneous equations determining the critical mag-
netic field H, and the energy gap of a superconducting film at H0 = Hc' It
is very easy to see that these two equations allow a solution with 22 =0

and with H, determined by the following equation:

1
ZJK 1w 0‘, (49)

K, which is accurate to the HZ term, has already been calculated in Section
VI. Using the result of Section VI, we obtain from (49) the critical mag-

netic field of the superconducting thin film as (d >> d¥%)

\
H: _ 0 T)6 1

Hew & do(e) (50)

The phase transition taking place at this time is a second order one. Us-
ing the assymptotic expression of ¢;(0) at ¢ >> 1 and ¢ << 1, we can obtain

the two limiting cases of (50):

when d << ¢ He _ 30(T) &, |
0 Hh a4
(44
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HE: _ ¢ 8KT)

when d >> €0 H., I

The latter agrees with the GL theory (Ref. 2, 7). Similar to the GL
theory, there is a critical thickness dc. When d < d., the phase transi-
tion is a second orde: one and when d > dc, the phase transition is of first

order. From (39), we know d, is determined by the following equation:

s & H. I
— 0.516 i N =,
1 (1) & i )H’c..

Substituting (50) into the above equation, we obtain the critical thickness

dc:

& 1 & 0(o)
8(T) 1.548 d; 0,(c)" (51)

Using the asymptotic expressions of ¢;(c) and @2(0) at ¢ >> 1, we obtain,

if 4, >> o> the following

& s, & . ...
< =‘T(l +0.286;c;+ ). (52)

8(T)

Obviously, when the temperature is close enough to Tc’ we would have

d. >> £y3. Therefore, in the vicinity of Tc’ (52) is always valid. Except
for unimportant corrections, this criterion agrees with the result of the
GL theory.

VIII. CRITICAL CURRENT

Using the method of Sections IV through VII, we can also calculate
the critical current. Assume the sample is a cylindrical column, with its
radius greater than the difference of the outside and inside diameter. We
can approximately treat it as a thin film (Ref. 6). Let Ry and R2 be the
inside and outside radius, respectively, R, - R, = 2d. Introduce the co-
ordinate r; = R- Ry (0 < Ty < 2d. Let the total current through the sam-

ple be J, and then the boundary conditions are

24




at r]_ = 0, H; = 0;
Hy=2L (53)
24, ) ‘

at r Ry

l:
The relationship between the current i(rl) and the vector potential

A(rl) is still given by (17). Using the method of Section IV, we /887

assume

= Hir} i
A("‘) 4d‘ + C + A('|), (54)

where C is a constant, and the boundary condition which A(rl) satisfies is

still (16). Substituting (54) into (17), under the first order approxima-

tion, it can be written as
J’A(rl) _ 4relA'R? kT Z Ss dpdq [ 4p?
24 dr} mic? (27)? 50 LGiw — £)’(iw + e)

(iw — Gl;:ziw + e)’] (H’d + C) Palr) —

e SEF 3T lamems

& (iw — &)(iw — &) (iw + G,)

;- Qg-.(”) (55)
P r r
¥ o= EGa ¥ E)Gia = )G T S fomrnidl et + |
er’A ;2 2p* o
“oia KT Z .“ (2x)? Q};kz" [(“" — &)(iw — &) (iw + 51) i
1~k =¥
¢ 1 |
+ 1 nJ.
(iw — £)(iw + £)(iw — &) (iw + ea)] (k — &) tph( )‘Ph( ) |
In (55) we neglected the following integral
41re'A’7i ‘
ST TkT 4p? 2pt
Z H‘ (2n) 3 [(iw - )’(m, + &) (:w — &) (iw + e),] 2¢ (),

Its contribution is only';%gz of the first integral in (55) and can be neg-
0

lected under the situation we are considering. Using the method of Section

IV, we can determine the constant C and obtain A(rl):

cwm 1 HS(T) A, _ Hyd
2 4 a 3’ (56)
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1. cos(2l + l)ﬂ y !
- 1 d 2;‘- 2d o . -—
A(ry) 0.82 A.(T) WDE sz(“) ZNCESY, % (21 + 1) ‘

nry
. . faiald
' A 1 d, (264 (s
Com Ly (2] 5 0 g (),
- a(T) &(T)& [\« 2oy o\
Now let us calculate the energy gap. The compensation equation is

RA! = 24 — K, — Ka, (31)
where K and KO are still given by (40) and (41). K, is given by (34b), but

(57)

A(rl) is defined by (54). The calculation shows that the critical current
is mainly determined by the first two terms in (54), and the contribution

of A(rl) can be neglected. Therefore,
Ky=2|glkT }_"_, Ij dldsdmdr,c (1, r)6., )"ﬁ (ﬁl— + c) F» Cl(s, m) X |
: 5

{
leﬁ ( o - .
+ C)—o0c".
'”c -—i;— C) B Glu(m,r) + ‘ /888

- (58)
+ |,|u§_;j...j dlsdmar,Gi(l, s _i("m +c ) o G2(s,1)G2 (1, m) X
- (7]

x ich (””"‘ + c) ——‘3 G%o(m, r)
mec 4d Om

After a calculation similar to that of Sections IV to VII, we obtain

. 78()eWpid | H,d 4(’( 5)e?p Hid*
[\ == ol .__L._ ————— e e, N 0
2 SO kT Y IgIV(O)( =+ c) kT fglN( ) (59)

Thus, we obtain

Al = A - ZC—L (_L + C)z — W) pkTH

7¢(3)n’'mc? °‘ (60)
dH. _
The critical current is determined by the equation qnZ = 0 (Ref. 6).
From (60), we obtain
Hyc 2d )
- o, (61)
Hey  6(T) AXT)
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where HJ is the magnetic field generated on the film surface by the criti-
c
cal current Jc. The relationship between H; and Jc is given by (53). A,
c
expresses the value of the energy gap when HJ = HJ . From (60) and (61),

c
we know

Al =

W’

ATy, 2

Substituting (62) into (61), we obtain

Hic 242 24

A (63)
Hey 34/ 3 8(T) !
This is the result we desired. Comparing (50) with (63), we have
A $
EUOHE==-if;JL[;r§lT;] Hiy,
o o)l (64)
It is easy to see that
44/ 2 (eo)*
HjcHe = == 22)" His
when d << £, e =3 \g) e (65a)
8
and when d >> g HjcHe = — Hew, | (65b)

The expression for HJc (63) obtained in this section agrees with the GL
theory (Ref. 6). HJc of the superconducting thin film is the only quantity
which agrees with the GL theory, no matter what the thickness is. From our
derivation, it is not difficult to understand that the non-local effect is
not important to this physical quantity.
IX. CONCLUSION

This article studied in detail the effect of the non-local character,
induced by the dimensions of the sample, on the behavior of superconducting
thin films in a magnetic field. A theory of superconductivity of a thin
metal film in a magnetic field is given (in a temperature range near T.)
and expressions for the magnetic moment, energy gap, critical magnetic
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field, and critical current of a superconducting thin film (d*% << d < 60(T))
are obtained.

The results of this paper show that the GL theory is applicable to a
film with enough thickness (d >> EO), but as the film thickness decreases -
especially when d << g, - there is considerable disagreement between the
result of this paper and that of GL theory (except for the critical current).

Taking the magnetic moment as an example, the theory of this paper expects

2
that when d << EO’ it is proportional to Gd(T)'%_' According to the GL
2 0 0
theory, it is proportional to 6d(T)' /889
0

In (Ref. 4), we compared the theoretical formula of the critical mag-
netic moment with the experiment and found very good agreement.

When carrying out this research we had many valuable discussions with
professor Wong Tzu-si and comrade Yu Lu. We would like to express our grati-
tude.
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